Minimum rank, maximum nullity and zero forcing number for selected graph families

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Rank, Maximum Nullity, and Zero Forcing of Graphs

Combinatorial matrix theory, which involves connections between linear algebra, graph theory, and combinatorics, is a vital area and dynamic area of research, with applications to fields such as biology, chemistry, economics, and computer engineering. One area generating considerable interest recently is the study of the minimum rank of matrices associated with graphs. Let F be any field. For a...

متن کامل

Ela Minimum Rank, Maximum Nullity, and Zero Forcing Number of Simple Digraphs

A simple digraph describes the off-diagonal zero-nonzero pattern of a family of (not necessarily symmetric) matrices. Minimum rank of a simple digraph is the minimum rank of this family of matrices; maximum nullity is defined analogously. The simple digraph zero forcing number is an upper bound for maximum nullity. Cut-vertex reduction formulas for minimum rank and zero forcing number for simpl...

متن کامل

Ela Positive Semidefinite Maximum Nullity and Zero Forcing Number

The zero forcing number Z(G) is used to study the minimum rank/maximum nullity of the family of symmetric matrices described by a simple, undirected graph G. The positive semidefinite zero forcing number is a variant of the (standard) zero forcing number, which uses the same definition except with a different color-change rule. The positive semidefinite maximum nullity and zero forcing number f...

متن کامل

Positive semidefinite maximum nullity and zero forcing number

The zero forcing number Z(G) is used to study the minimum rank/maximum nullity of the family of symmetric matrices described by a simple, undirected graph G. The positive semidefinite zero forcing number is a variant of the (standard) zero forcing number, which uses the same definition except with a different color-change rule. The positive semidefinite maximum nullity and zero forcing number f...

متن کامل

Ela the Maximum Nullity of a Complete Subdivision Graph Is Equal to Its Zero Forcing Number∗

Barrett et al. asked in [W. Barrett et al. Minimum rank of edge subdivisions of graphs. Electronic Journal of Linear Algebra, 18:530–563, 2009.], whether the maximum nullity is equal to the zero forcing number for all complete subdivision graphs. We prove that this equality holds. Furthermore, we compute the value of M(F, G̊) = Z(G̊) by introducing the bridge tree of a connected graph. Since this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Involve, a Journal of Mathematics

سال: 2010

ISSN: 1944-4184,1944-4176

DOI: 10.2140/involve.2010.3.371